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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative dis-
ease without any certain treatment until now and leads to death 
eventually. In addition, AD mainly affects older people over the 

age of 65 years with an exponentially increasing rate, nearly doubling 
every five years [1]. However, Alzheimer’s has no definitive cure [2,3], 
and the detection of the disease in the early stage can enormously assist 
in slowing down the progress, leading to effective treatment.

Some tests are used to diagnose Alzheimer’s, such as mini-mental 
exams [4], distinguishing the cognitive symptoms of the disease, and 
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Background: Alzheimer’s disease (AD) is the most dominant type of dementia that 
has not been treated completely yet. Few Alzheimer‘s patients are correctly diagnosed 
on time. Therefore, diagnostic tools are needed for better and more efficient diagnoses. 
Objective: This study aimed to develop an efficient automated method to differen-
tiate Alzheimer’s patients from normal elderly and present the essential features with 
accurate Alzheimer’s diagnosis.
Material and Methods: In this analytical study, 154 Magnetic Resonance 
Imaging (MRI) scans were obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database, preprocessed, and normalized by the head size for extract-
ing features (volume, cortical thickness, Sulci depth, and Gyrification Index Features 
(GIF). Relief-F algorithm, t-test, and one way-ANOVA were used for feature ranking 
to obtain the most effective features representing the AD for the classification process. 
Finally, in the classification step, four classifiers were used with 10folds cross-vali-
dation as follows: Gaussian Support Vector Machine (GSVM), Linear Support Vec-
tor Machine (LSVM), Weighted K-Nearest Neighbors (W-KNN), and Decision Tree 
algorithm. 
Results: The LSVM classifier and W-KNN produce a testing accuracy of 100% 
with only seven features. Additionally, GSVM and decision tree produce a testing ac-
curacy of 97.83 % and 93.48 %, respectively.  
Conclusion: The proposed system represents an automatic and highly accurate 
AD detection with a few reliable and effective features and minimum time.
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brain imaging techniques, such as Magnetic 
Resonance Imaging (MRI) [5-8]. The neuro-
pathological alteration due to AD can appear 
much earlier before the onset of clinical symp-
toms [9]. Therefore, the early detection of AD 
using neuroimaging techniques is considered 
a promising area of research, especially with 
the advances in machine-learning and image-
segmentation techniques [10-16].

MRI scans have been investigated to obtain 
many Alzheimer’s biomarkers and study the 
most atrophic regions using volume measure-
ments [6,17], shape [18], texture [17,19,20], 
cortical measurements [21,22], and sulcal 
measurements [23]. These measurements were 
applied to many brain regions, such as the hip-
pocampus [24], which is one of the earliest 
brain regions in the neurodegeneration [25], 
amygdala [26,27], whole brain [28], entorhi-
nal cortex [29], brainstem [30], and ventricles 
[31]. Recent advances in machine-learning 
techniques, such as Support Vector Machine 
(SVM) [32,33], Naïve Bayes, Logistic Re-
gression, and K-Nearest Neighbors (KNN ) 
[34] have been implemented. The use of au-
tomated methods rather than relying solely on 
physician experiments has led to the reliance 
on ensemble models to improve disease detec-
tion and increase accuracy. However, a major 
challenge is in selecting the best biomarkers 
that characterize AD to differentiate between 
AD and Normal Controls (NC). 

Several feature selection methods have been 
used in recent studies; for example, Particle 
Swarm Optimization (PSO) algorithm [35], 
genetic algorithm, t-test [36,37], and Principal 
Component Analysis (PCA) [38-41].

The current study aimed to demonstrate the 
least and most beneficial number of features 

among a large pool of different AD biomark-
ers to classify AD cases and perform the best 
classifiers using these features.

Material and Methods

Database
In this analytical study, data were acquired 

from the Alzheimer’s disease Neuroimag-
ing Initiative (ADNI) database (http://adni.
loni.usc.edu), propelled as a public-private 
corporation by six nonprofit organizations in 
2003 as follows: the National Institute on Ag-
ing (NIA), the National Institute of Biomedi-
cal Imaging and Bioengineering (NIBIB), the 
Food and Drug Administration (FDA), and 
private pharmaceutical companies. ADNI’s 
main objective was to check whether some 
specific biomarkers, clinical and neuropsycho-
logical assessment, positron emission tomog-
raphy (PET), and serial MRI can be combined 
to evaluate the Mild Cognitive Impairment 
(MCI) evolution and early Alzheimer’s. 

154 T1-weighted images were obtained 
from ADNI, 37 female cases and 41 male 
cases in the AD stage, and 40 females and 36 
males in the normal control (NC) stage. The 
age ranged from 50 to 85 years. The magnetic 
field strength was 3T, slice thickness was 1.2 
mm, acquisition matrix was 240 ×256 pixels 
with pixel spacing X=1.0 mm; pixel spacing 
Y=1.0 mm, the number of slices = 176, and 
demographic characteristics of the individuals 
(shown in Table 1).

Image Preprocessing
Before executing the analysis, the quality 

of the data must be improved due to missing 
values and inaccurate information, leading to 

Class Female Male Sample size/each class
Alzheimer’s Disease Patients (AD) 37 41 78

Normal Control (NC) 40 36 76

Table 1: Sample size for classes
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distorted results. The data was preprocessed 
using CAT12 after obtaining it from ADNI. 
The preprocessing workflow involved bias 
field inhomogeneities correction, affine reg-
istration, skull stripping, and normalization to 
Montreal Neurological Institute (MNI). Ham-
mers atlas [42] is then used as a binary mask to 
select the brain Regions of Interest (ROIs), as 
shown in Figure 1. Finally, 71 raw volumetric 
measurements, 68 cortical thickness (CT), 68 
gyrification indexes (GI), and 68 sulcal depth 
(SD) measurements are extracted. The four 
measurements, together with their differences 
among AD and NC, are shown in Figure 2. 
Volume measurements, involving the hippo-
campus, amygdala, temporal pole, fusiform, 
insula, putamen, thalamus, lateral temporal 
ventricle, and cuneus were normalized by the 
intracranial volume. Relative volumes provide 
more precise volumes to reduce the influence 
of factors, such as the head and brain size. 

Entorhinal, temporal pole, fusiform, parahip-
pocampus, and insula are examples of surface-
based characteristics (CT, GI, and SD), result-
ing in the excellent features to indicate the 
existence of the disease.

Feature Selection
Feature selection uses specific algorithms to 

select the most relevant features with the most 
contribution towards predicting variables for 
increasing the accuracy and reducing the pre-
diction time. A high-dimensional feature vec-
tor, 71 volumetric, and 68×3 surface-based 
features (cortical thickness, sulcal depth, and 
gyrification index) were in this study without 
any significant or appropriate information to 
diagnose AD. Therefore, the following algo-
rithms are used to obtain the top-ranked fea-
tures, including the Relief-F algorithm, t-test, 
and one-way ANOVA.
Relief-F Algorithm
Relief-F is one of the filter methods used for 

feature selection that is particularly sensitive 
to feature interactions [43], designed original-
ly for binary classification, and replaced with 
Relief-F as the most utilized algorithm [44]. 

This algorithm aimed to assess the quality of 
features according to the ability of their val-
ues to separate between the cases that are close 
to each other [45], including three important 
steps: the nearest hit and miss, calculation of 
the weights of features, and presentation of 
a ranked list of features. Based on this list of 
features, the top 12 ranked optimal features 
were selected. The t-test is a statistical test to 
determine a difference in the means of two 
samples and either dependent or independent 
samples. T-tests were used as a feature rank-
ing algorithm in a variety of machine-learning 
studies [46,47]. The formula of the t-test is de-
fined as follows:

1 2
2 2

1 2

1 2

t value
  

n n

µ µ
σ σ

−
− =

+
                                    (1)

where n1, n2 are the number of samples, μ1, 
Figure 1: Workflow of medical image prepro-
cessing
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μ2 are the means, and σ1, σ2 are the standard 
deviation of two classes. 

T-value measures the significance of the dif-
ference between two samples relative to the 
variation in each sample. Therefore, the high 
t-value of a specific feature for the two sam-
ples AD and NC leads to reliability in the clas-
sification and selection. 

The absolute t-value for each feature was 
computed, and all features were ranked de-
pending on their t-values. The 12 top discrimi-
native features were selected.
One Way ANOVA
ANOVA stands for analysis of variance 

was used to compare the sample means for 
two independent groups, or more, determin-
ing whether one group has a statistically sig-
nificant difference in its mean than the others 
based on the following formula:

F value b
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where F is the variance ratio for the overall 
test, MSb is the mean square between groups, 
MSw is the mean square within groups, k is the 
number of classes, and n is the number of ob-
servations.

The F-value was measured for all features 
and ranked from the highest F-value to the 
lowest; the 12 top-ranked features were then 

Figure 2: Brain mapping of cortical thickness, gyrification index, and sulcus depth maps esti-
mated using CAT12 toolbox. Each column denotes a subject in the normal control (NC) and 
Alzheimer’s disease (AD) groups. 
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obtained.

Classification
Support Vector Machine (SVM)
SVM is a discriminative classifier for the 

selection of the best hyper-plane or a group 
of hyper-planes that maximizes the distance 
of the margin to classify the data into many 
classes. The hyperplane is defined by the fol-
lowing equation:

g(x)=wTx+b
where w is the weight vector, and b is the 

offset parameter for the input vector x. 
The maximum and minimum margin widths 

are 2/(||w||) and 1/2 ||w||, respectively.
For non-linearly separable data, SVM uses 

a kernel function with an added dimension to 
the data and transforms data to a higher-di-
mensional space, such as the Gaussian kernel 
defined [48] as follows:

(x,y)=exp(-γ|x-y|2)
where γ is gamma, and |x-y|2 is defined as 

squared Euclidean distance between the two 
feature vectors. The gamma hyperparameter 
(γ) controls the training points, which affected 
the decision boundary.
K-Nearest Neighbor 
In the training phase, K-Nearest Neighbor, 

as one of the simplest supervised machine-
learning classifiers, stores and arranges all 
labeled data in the memory. Therefore, it is 
memory-based without any need to model 
fitting and classifies the test point based on a 
similarity measure between the test point and 
its nearest neighbors. For example, with x0 as 
a new point, the k-nearest neighbor search ob-
tained the k closest points in distance to x0. 
Among these k neighbors, the number of the 
data points in each class was counted. Based 
on the most votes from the neighbors, the data 
point is classified. 

Weighted KNN takes the majority votes 
from the neighbors without caring about their 
distance from the test point.
Decision Tree
The decision tree is a classification model 

in a shape of a diagram used in data analy-
sis. In the training step, this algorithm aimed 
to divide the data into smaller sets of data 
based on a specific feature. The node in the 
tree states a condition of a feature; each branch 
falling from that node corresponds to one of 
the possible attribute values. Each leaf repre-
sents class labels related to the case. Cases in 
the training set are classified by guiding them 
from the tree’s root down to a leaf, depending 
on the result of the tests.

Results
A total of 154 individuals participated in this 

study, 108 and 46 for the training and testing 
the performance of classifiers, respectively. 
The features were organized into four main 
groups: volume features, cortical thickness, 
sulcal depth, and gyrification index. Volume 
was measured for 71 regions of interest (ROI) 
in the brain. Each of the other three features 
was measured for 68 ROI, as explained in Ap-
pendix 1. 

The t-test, Relief-F algorithm, and ANOVA 
were used for the feature ranking process and 
selected the 12 top-ranked features from each 
of them, as indicated in Table 2. The 9 com-
mon features were selected among the 12 
top-ranked features (group1), including the 
right amygdala, cortical thickness left ento-
rhinal, left amygdala, left hippocampus, cor-
tical thickness right entorhinal, right ambient 
and parahippocampus, right hippocampus, left 
ambient and parahippocampus, and left infe-
rior middle temporal gyri.

A total of 9 top-ranked features were then 
selected, and then the 7 common features were 
selected among the 9 features. The 7 Com-
mon features were considered group2, includ-
ing the right amygdala, cortical thickness left 
entorhinal, left Amygdala, left hippocampus, 
right ambient and parahippocampus, right hip-
pocampus, left ambient, and parahippocam-
pus.

The four classifiers, such as decision tree, 
linear SVM, Gaussian SVM, and weighted 
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KNN were executed using all features com-
bined and the two groups of features with 46 
test points to assess the performance of the 
proposed feature selection, as shown in Table 
3.

Linear SVM and weighted KNN classifiers 

showed the best performance with 100% accu-
racy when these 7 features were used (Tables 
3 and 4, and Figures 3 and 4). Further, Table 
3 illustrates that the average time required for 
all classifiers to predict one observation when 
using 7 features is much less compared to the 

Features from t-test 
ranking

t -value
Features from ANOVA 

ranking
F score

Features from 
Relief-F ranking

Weight

Right Amygdala 11.8
Cortical thickness_left 

entorhinal
114.5

Cortical thickness_left 
entorhinal

0.176

Cortical thickness_left 
entorhinal

11.71 Right Amygdala 114.4 Left Amygdala 0.135

Left Amygdala 11.02 Right Amygdala 112.2 Left Hippocampus 0.133

Left Hippocampus 10.7 Left Hippocampus 100.4
Cortical thickness_

right entorhinal
0.130

Left Inferior Middle Temporal 
Gyri

10.66
Left Inferior Middle Temporal 

Gyri
92.8 Right Hippocampus 0.129

Right Ambient and Parahip-
pocampus Gyri

10.12
Right Ambient and Parahip-

pocampus Gyri
89.1 Right Amygdala 0.124

Right Hippocampus 10.08 Right Hippocampus 88.04
Left Ambient and 

Parahippocampus Gyri
0.110

Left Ambient and Parahippo-
campus Gyri

10.06
Left Ambient and Parahippo-

campus Gyri
87.9 Left Fusiform Gyrus 0.108

Right Inferior Middle Tempo-
ral Gyri

9.83
Right Inferior Middle Tempo-

ral Gyri
84.7

Right Ambient and 
Parahippocampus Gyri

0.092

Left Anterior Medial Temporal 
Lobe

9.74
Left Anterior Medial Temporal 

Lobe
83.2

Cortical thickness right 
temporal pole

0.080

Cortical thickness_right 
entorhinal

9.55
Cortical thickness_right 

entorhinal
78.69

Cortical thickness left 
inferior temporal

0.077

Left Posterior Temporal Lobe 9.2
Right Anterior Medial Tempo-

ral Lobe
76.4

Left Inferior Middle 
Temporal Gyri

0.072

Table 2: Top-ranked features for the studied algorithms

 
Decision 
tree (%)

Linear 
SVM (%)

Gaussian 
SVM (%)

Weighted 
KNN (%)

Avg prediction time (milliseconds/
one obs) (msec)

Original features 95.65 95.65 93.48 86.95 3
9 common features 93.48 97.83 97.83 97.83 0.7
7 common features 93.48 100.00 97.83 100.00 0.6 msec

SVM: Support Vector Machine, KNN: K-Nearest Neighbors, obs: Observation

Table 3:  Accuracy and prediction time for using the original features, 9 common features, and 
7 common features.
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number of features =7 number of features=9

precision sensitivity specificity precision sensitivity specificity
Decision Tree  0.95 0.9047  0.96  0.95 0.9047  0.96 
Linear SVM 1 1 1 0.9545 1  0.96

Gaussian SVM 0.9545 1  0.96 0.9545 1  0.96
Weighted KNN 1 1 1 0.9545 1  0.96

SVM: Support Vector Machine, KNN: K-Nearest Neighbors

Table 4: Classification performance of applied classifiers 

Figure 4: Performance measurements for 9 common features

Figure 3: Performance measurements for 7 common features
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prediction time for using the original features. 
As a result, the suggested approach would pro-
vide the most critical characteristics with the 
least time and the greatest accurate outcomes 
compared to earlier efforts. We considered the 
following measurements:

( )
Sensitivity ,Specificity ,

,   

TP TN
TP FN TN FP
TP TP TNPrecision Accuracy

TP FP TP TN FP FN

= =
+ +

+
= =

+ + + +

where TP, TN, FP, and FN are true positive, 
true negative, false positive, and false nega-
tive, respectively.

Figure 5 shows that cortical thickness right 
entorhinal and left inferior middle temporal 
gyri features, excluded when creating group 
2, have large overlapping areas between AD 
(class 1) and NC (class 2). Therefore, the elim-
ination of them increased the accuracy of de-
tection for LSVM and W- KNN.

Discussion
In this work, 4 machine-learning models 

were proposed, including decision tree, lin-
ear SVM, Gaussian SVM, and weighted KNN 
for differentiating AD individuals from brain 
MRI images. Based on the results, linear 
SVM and weighted KNN achieved the same 

performance with accuracy of 100% using 7 
features. The SVM and KNN provide good 
performance with 7 and 9 features with sen-
sitivity (recall), selected as the models to de-
crease missed AD cases as much as possible.

When volume features were combined with 
surface-based features (CT, SD, and GI), sul-
cal depth and gyrification index were under-
estimated. As a result, sulcal depth and gyri-
fication index did not rank amongst the top 
features. GI and sulcal depth (SD) do not con-
tribute to the detection of AD stage compared 
to volume features. Therefore, we can rely 
primarily on the volumes of the hippocampus 
(left and right), amygdala (left and right), and 
parahippocampus (left and right) as parts of 
the limbic brain system. Furthermore, the left 
cortical thickness of the entorhinal cortex can 
be added to the previous volume features to 
improve detection performance.

Table 5 compares various results from pre-
vious techniques for detecting Alzheimer’s 
disease and the proposed method. One com-
pared study developed an approach for clas-
sifying AD from NC with accuracy up to 
92.86% by using fusion of texture and mor-
phemtric features, RFE-SVM for the feature 
selection process and SVM for the classifica-
tion process [40]. Another study depended on 

Figure 5: Boxplot of the two excluded features
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References Year AD diagnosis #Of features Techniques used Dataset
Accuracy 

(%)

[33] 2020

Segmentation And 
feature extraction, 
Feature selection, 

Classification

138 anatomical 
morphometry: 40 
subcortical vol-

umes. 98 cortical 
thickness.

Segmentation And feature 
extraction: MALPEM, Feature 
selection: PCA, Classification: 

SVM

701 subjects (326 
GARD, 123 ADNI, 121 
ARWIBO, 131 NACC) 

AD:168 NC: 274

For GARD 
data: 95.45

[38] 2011
Feature extraction, 
feature reduction, 

classification
20 features

Feature Extraction: VBM, 
Feature reduction: PCA, Clas-

sification: SRAN

OASIS Dataset, 
Subject=60, AD=30, 

NC=30
91.18

[39] 2013
Feature extraction, 
Feature selection, 

Classification
20 features

Feature extraction: VBM, 
Feature Selection: PCA, Clas-

sification: ELM

OASIS dataset, 
subjects=218, AD=70, 

NC=98

94.63 (5788 
features) 91 
(20 features)

[40] 2015
Feature extraction, 
Feature selection, 

Classification
9 features

Feature extraction: Gray-
Level Co-occurrence Matrix 
(GLCM) method and Gabor 
filter (Texture features) and 

VBM analysis (Morphometric 
feature), Feature selection: 

SVM-RFE, Classification: SVM

ADNI database, 
subjects=112, AD=54, 

NC=58
92.86

[41] 2015
Feature extraction, 
Feature selection, 

Classification
31 features

Feature extraction: VBM, 
Feature Selection: RFE, Clas-

sification: PBLMcRBFN

OASIS dataset, 
subjects=60, AD=30, 

NC=30
89.81

[49] 2020

Data labeling 
Building, CNN 
model, Perfor-

mance evaluation

12 layers CNN
OASIS dataset, sub-
jects= 416, AD=100, 

NC=316
97.65

[50] 2021
Segmentation, 

Feature extraction, 
Classification

Segmentation: 3D deep U-Net, 
Feature extraction and clas-

sification: CNN model

ADNI dataset, AD=194, 
NC=216

85.9

[51] 2013
Feature extraction, 
Feature selection, 

Classification
10 features

Feature extraction: VBM, 
Feature selection and clas-

sification: ICGA with an ELM 
classifier

OASIS dataset, 
subjects=60, AD=30, 

NC=30
91.86

Proposed 
work

2021
Feature extraction, 
Feature selection, 

Classification
7 Features

Feature extraction: ROI Fea-
ture selection: ANOVA+t test+ 
ReliefF, Classification: LSVM, 

W-KNN

ADNI dataset, 
Subjects=154, AD=78, 

NC=76
100

AD: Alzheimer’s Disease, NC: Normal Control, OASIS: The Outcome and Assessment Information Set, VBM: Voxel Based 
Morphometry, PCA: Principle Component Analysis, SRAN: Self Adaptive Resource Allocation Network classifier, ICGA: Integer 
Coded Genetic Algorithm, ELM: Extreme Learning Machine classifier, SVM-RFE: support vector machine - recursive feature 
elimination, PBLMcRBFN : projection based learning for meta-cognitive radial basis function network, MALPEM: A package 
involves software and data files to accomplish a brain extraction and segmentation into 138 cortical and subcortical structures, 
GARD: Gwangju Alzheimer’s disease and Related Dementia dataset, ARWIBO: Alzheimer’s Disease Repository Without Bor-
ders, NACC: National Alzheimer’s Coordinating Center, ADNI: Alzheimer’s Disease Neuroimaging Initiative, CNN: Convolu-
tional Neural Network, ROI: Region of Interest, ANOVA: Analysis of variance, W-KNN: Weighted K-Nearest Neighbors

Table 5: Techniques used in related works
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31 morphemtric features selected using RFE 
algorithm to differentiate between AD and NC 
with accuracy equal to 89.81% [41]. One re-
port developed a method based on 12 layers 
convolutional neural network (CNN) model 
for AD diagnosis with an accuracy of 97.65% 
using MRI images acquired from OASIS da-
tabase [49]. 

The main reason for this output is using a 
small number of very associated features with 
AD and removing redundant features. The ex-
istence of unrelated features reduces the clas-
sification ability of the model and the overall 
accuracy, showing the enhancement in the 
models’ performance when excluding right 
cortical thickness of entorhinal and left inferi-
or temporal gyrus features from the 9 features. 
Furthermore, this study didn’t depend on one 
feature selection methods to select features.

The limitation of the proposed study is to 
use filter feature selection technique without 
consideration of the features correlation or de-
pendency. 

The presented work can be improved by us-
ing the MCI stage in the future, requiring more 
relevant features and implementation of more 
feature engineering steps, which we are work-
ing on to develop an approach to classify the 
three stages of Alzheimer’s NC, MCI, and AD.

Conclusion
In this study, an efficient classification sys-

tem for Alzheimer’s disease diagnosis is pro-
posed, based on combining more than one 
feature selection method (t test, one way 
ANOVA, and Relief-F algorithm) to acquire 
the most significant features representing AD 
from a huge pool of features. Furthermore, 
four classifiers (decision tree, linear SVM, 
Gaussian SVM, weighted KNN) was applied 
to select the highest accuracy. The experiment 
explained that linear SVM and weighted KNN 
and the following features are the most precise 
classifiers: left hippocampus, right hippocam-
pus, left amygdala, right amygdala, left ambi-
ent and parahippocampus, right ambient and 

parahippocampus, and cortical thickness_left 
entorhinal. In addition, combining volume 
features with cortical thickness features will 
provide more accurate results than using either 
volume or cortical thickness independently. 
However, the traditional techniques of classi-
fiers have been used and applied on extracted 
features, the maximum accuracy together with 
the minimum number of features have been 
collected. 

In the future of this study, we plan to imple-
ment an approach to classify the three stages 
of Alzheimer’s NC, MCI, AD and to increase 
the dataset for a robust classification system.
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